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Abstract

Recent advances in GPU compute performance and efficiency have driven a rapidly
expanding machine learning (ML) field. With each generation chipset bringing higher
performance per Watt, many learning tasks are optimized for these new architectures.
However, GPU compute needs are quickly outpacing Moore’s law [27]], often lead-
ing to a shortage of GPUs and rapid construction of new data centers. This lack of
availability has caused many systems to continue using legacy hardware for compute
needs. On average, 40% of the hardware deployed within data centers is over 3 years
old [9], raising concerns over hardware efficiency and power consumption. This pa-
per aims to provide context for understanding ML performance across various genera-
tions of hardware, benchmarking its efficiency, then extrapolating the results to discuss
different hardware configurations. Currently the ML industry lacks easily accessible
tools to compare systems efficiency, many opting to look only at raw performance
metrics. Meaningful comparisons between separate generations of hardware and the
understanding of its limitations will allow for better optimization of existing and fu-
ture models. This will counteract the rapidly increasing power demands brought on
the industry by cutting edge research and big data.
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Chapter 1

Background

1.1 GPU History

The graphics processing unit, or GPU, has existed in various forms since the 1970’s.
Originally it functioned as a programmable processing unit separate from the CPU,
handling graphical output for a system. Early GPUs were used in various devices such
as arcade cabinets, consoles and home PC’s. One of the first notable GPU releases was
by IBM in 1981 [33]. It was contained in the IBM PC and called the Color Graph-
ics Adapter, supporting an output of 640x200 in 4bit color with 16kb of RAM. This
was followed shortly by the Professional Graphics Controller and Enhanced Graphics
adapter in 1984, marking the first GPU targeted for professional CAD and 3D work
[33]. GPU development continued until 1995 where the first consumer level chips
were released by companies such as Matrox, Creative, ATI, and Nvidia. The release
of these GPUs along with the development of the VGA Graphics finally brought mod-
ern graphics cards to the mass market. Despite the competition from manufactures, in
2000’s the market was cornered entirely by ATI (AMD) and Nvidia with their Radeon
and GeForce lines of graphics cards. This brand dominance still remains 20 years later
without much outside competition.

1.2 GPU Hardware

Modern graphics cards have a fairly standardized set of components, such as the GPU,
video memory (VRAM), and voltage regulator module (VRM) [30]. These compo-
nents are contained on a single Printed Circuit Board (PCB), commonly interfacing
with CPU using the PCIE protocol. The card is affixed into a PCIE slot on the mother-
board providing a high speed link between the two components.

The GPU die typically occupies the largest amount of space on the PCB, being placed
directly in the middle of the board. The GPU, much like a CPU, contains billions of
transistors [16], and handles large computing tasks such as rendering video or graphics
outputs to a display. This draws the highest amount of power in a typical system falling
between 100W — 300W [[15)]. The heat generated by this chip must be actively cooled
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1.3. Compute With GPUs 5

to prevent thermal throttling, a safety measure where the GPU automatically slows to
reduce temperatures, inadvertently reducing performance in the process [2]].

The GPU itself contains multiple smaller cores, each serving dedicated functions.
Nvidia labels these as Cuda Cores, with each core falling under the category of shader
processing units, texture mapping units, render output units, ray tracing cores, or Ten-
sor Cores. They are all optimized for different functions but the massive quantity of
cores allows for fast parallel computing [22]].

As the GPU processes data, it needs not only a location to read incoming data from, but
also a physical location to store output data such as rendered frames. The next compo-
nent in the stack, the VRAM, surrounds the GPU on the PCB providing a highspeed,
read and write connection directly to the GPU [30]. This memory runs at much higher
speeds than typical RAM, having extremely high data thruput, allowing for the simul-
taneous read / write function that the GPU requires. The VRAM chip set consumes the
majority of the remaining power when running the graphics card.

The VRM handles the power delivery from the power supply (PSU), dispersing it
around the PCB to each component. It takes the input of 12V stepping it down to
around 1.1V to 1.3V using multiple layers of MOSFET with PWM switching [30].
Aside from the power modulation, the VRM also serves to reduce noise from the in-
put. This function is essential to the running of GPU chipsets as they have razor thin
voltage margins. Deviations can result in system instability and crashes

1.3 Compute With GPUs

While CPUs are mostly applicable for problems that require parsing through or inter-
preting logic in code, GPUs are designed specifically for rendering a graphical out-
put. This workflow requires highly parallel computation, dedicating more transistors
to processing data compared to flow control [22]]. The parallel nature also results in a
high ratio between memory access and computation, dramatically reducing the need
for caching. This process facilitates the low latency and high volume of computation
necessary for rendering graphics in real time.

At its core, rendering uses the same base calculations of matrix multiplication and
transformations, as neural networks [22]. The similar nature of these processes as
well as the scalability found in learning tasks results in the GPU perfectly suiting its
computational requirements.

While training a neural network, inputs are given and processed in hidden layers.
Weights are then adjusted during training with the model delivering a prediction. This
process is repeated multiple times with the weights and biases adjusted until model
performance is deemed acceptable. Rapid calculations at the large scale required for
fast model training necessitates the use of many cores so data processes in parallel in-
stead of sequentially. The structure of the GPU perfectly fits this need, making it the
preferred tool for training neural networks.

Released in 2006, Nvidia’s Compute Unified Device Architecture (CUDA) was the
first general purpose framework to allow parallel computation on Nvidia’s GPUs [22].
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It supports various languages such as C, C++, Java and Python. CUDA functions by
splitting tasks that can be executed in parallel into blocks. These blocks are then passed
to the GPU for computation and are able to execute on any core. The number of GPU
cores varies, but they significantly outnumber the core count of CPU’s resulting in a
vast performance delta.

In recent years the focus of ML tasks have shifted from basic computational mod-
els to that of highly complex networks with thousands of hyperparameters. Between
2012 and 2018 the amount of computational resources used by deep learning research
is estimated to have grown over 300,000x [25], leading to an equaly large increase
in energy consumption. As these networks increase in depth and complexity, the re-
sources required to optimize them also rises substantially. This has birthed two general
approaches for learning, the concept of Green Al and Red Al [25].

Much of the Al industry operates at the bleeding edge of technology, searching for
accuracy above all else. Red systems are purely focused on optimizing results, of-
ten spending massive amounts of compute time to improve models by fractions of a
percent [26]. This consumes large quantities of energy without resulting in any signif-
icant improvement over earlier iterations of the model. There is a point of diminishing
returns in optimization that is ignored in the pursuit of perfection in many cases.

Contrasting this, Green Al focuses on finding the point of diminishing returns and
only optimizing hyperparameters to that point, a conscious decision to conserve en-
ergy. Green Al advocates also call for more publishing of energy consumption and
efficiency figures within academic papers. Even without changing current practices,
the publishing of these figures would draw attention to the issue. It is not intended to
take the place of Red Al, but to supplement it when appropriate. Being mindful of
energy consumption pertaining to GPUs can save system resources, allowing for more
models to be run on lower spec hardware [25]. However there still remains a lack
of information regarding how to specifically decrease power consumption while still
maintaining acceptable levels of performance.

1.4 GPU Power Consumption

Original Equipment Manufacturer (OEM’s) develop Graphics Cards, detailing the spec-
ifications for each component, the layout of the PCB, and the thermal package required
to cool the GPU. Board Partners then take these specifications for each card, modify-
ing them in an effort to improve the end result. These modifications, reduction in card
size, increased cooling capacity, or increase in GPU / VRAM clock speeds, create a
wide range of cards for the end user to choose from.

The power consumption of Graphics Cards, measured in Watts (W), describes the
power draw that the entire GPU, VRAM, and VRM stack pulls from the wall. The
manufacture of each card provides a metric called the Thermal Design Power (TDP)
detailing this power draw. It serves as not only an indicator or the power draw but also
the cooling solution required to run the card efficiently [2]]. However, TDP functions
more as a loose guideline than as a definitive metric. Depending on a system’s total
available power and cooling, GPU’s often exceed the TDP. This happens for one of two
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reasons, momentary spikes or a sustained GPU and VRAM overclock. However, both
require that systems are equipped with a power supply (PSU) with adequate headroom.
Not leaving a margin will result in unstable performance and constant crashing.

Despite this, TDP has remained similar across comparable Graphics Cards from multi-
ple generations, see Table [2.1] for reference. The improvements in GPU compute have
not come from simply increasing the TDP, rather they have come from advancements
in GPU architecture [27]. These improvements have focused on shrinking the size of
transistors, allowing for more to be packed onto each die. The smaller transistor size
allows for more efficient function of the chipset, while the increased number of tran-
sistors increases compute performance [27]. These functions balance out, resulting
in a more powerful GPU while keeping the TDP equal to or lower than the previous
generation.

1.5 GPU Benchmarking

The change in compute performance and TDP between each generation chipset presents
a problem when trying to quantify performance improvements. Benchmarking serves
as a tool to compare various aspects of a GPU. These benchmarking tools work by
running a standardized test, recording a metric, and computing a result [1]]. Different
metrics can be used when benchmarking a system. Nvidia often touts metrics like
Tera Floating Point Operations Per Second (TFLOPS), Tera Operations Per Second
(TOPS) in their presentations. This can then be compared with other results, allowing
for comparisons between different systems or hardware configurations to be made.

Many current benchmarking suites focus on graphics performance, such as running
tests using prefabricated environments within game engines or rendering a standard-
ized scene in a CAD program [5]. These are repeatable tests that are accessible and
easy to use, requiring no setup outside of the instillation of the suite. The metrics used
in these tests are often very rudimentary, average frames per second while moving
through a scene, or time to complete a CAD render. However, these tests are opti-
mized specifically for graphics-based tasks, not accounting for other factors, such as
power consumption or cost of hardware. Each of these factors directly affect the per-
formance, or the efficiency of the system [27] while testing, leading to an incomplete
representation of system performance.

MLPEREF is the most popular benchmark for measuring a systems performance over
a wide range of ML specific tasks. The benchmark, developed by industry leaders at
Nvidia, Google, Stanford, and Harvard, focuses on ML training and associated tasks.
These include image classification, object detection, natural language processing and
reinforcement learning [24]]. The tests are curated by a team of researchers from both
big tech and academia, stating that they aim to accelerate progress in machine learning,
encourage innovation, and keep benchmarking affordable to all [24]]. It remains open
source and free to use, though is not user friendly for those unfamiliar with its code
base.

The benchmarks are measured using a timing method, allowing for a model to be
trained, timed, and compared with other systems [24]. To account for variability in
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tests, the benchmarks are run a predetermined number of times, with the score then
averaged to give the final result. According to the documentations scores typically
have a deviance of +/- 5% between different runs [24], larger variations indicating
issues with the benchmark.

Despite its popularity it is not necessarily the only option for a ML benchmark. The
lightweight Al-Benchmark is a python based tool originally developed for use with
smartphones [8]]. It has recently made its way to desktop benchmarking, having the
advantage of a simple instillation from its pip package within python. However, due to
its intended use on smartphones, the tests are far to short in duration and run at a very
small scale. It does not adequately stress a powerful GPU during tests, but remains a
decent choice for lower end hardware.

A better option is found when looking at TensorFLow based benchmarks. Of the few
available the most popular is the ResNet-50 benchmark [29]. It is similar to a CNN
test within MLPERF, however it is easier to install with the given documentation. It
also remains is used as a common validation test for systems that will be utilizing Ten-
sorFlow while training models. The TensorFlow package depends on other instillation
such as CUDA, so running the benchmark is a quick way to ensure the environment is
ready for development. It runs on the command line and outputs a value in images per
second, based on how many were processed by the GPU.

For a benchmark that is not specifically related to ML, the Blender Benchmark is an
widely used option. It offers high duration testing that scales well over multiple GPUs,
along with configurable parameters. It runs within Blender, an open source 3D toolkit
used from professional animation of feature films to 3D modeling [3]]. It utilizes a
proprietary rendering ending called Cycles that features support for Nvidia CUDA.
The benchmark focuses on rendering a static scene or high poly-count 3D object, such
as a BMW sedan or a classroom. The benchmark tests both the GPU and CPU with
a realistic load that mirrors the intended use case of somebody working within the
Blender Suite.

Scores from these benchmarks are derived measuring the time that it takes to com-
pletely render the object or scene. Multiple test scenes are provided at varying levels
of complexity and polycounts, allowing for the user to select a benchmark that will
closely match their own work. Blender also remains free to use and completely open
source, allowing anybody to run these benchmarks [3]]. It also supports multiple operat-
ing systems and users can also chose to report benchmark scores to an online database
that aggregates the data for all to see.

Without actually running a ML specific benchmark, Blender has the most similarities
out of any other benchmarks to a ML workload. Blender heavily relies on GPU com-
pute for rendering much like the training of a deep learning neural network. It also
supports multiple GPU’s in both single system configurations or in rendering nodes
dispersed across a local network [S]]. This also draws parallels to high end servers,
used for large ML projects, with multiple GPU’s or even multiple discrete systems
used together. Though the benchmark on its own does not provide a meaningful score
relating to ML performance, the score can be looked at broadly to estimate ML perfor-
mance relative to other systems that have also run the Blender Benchmark.



Chapter 2

Procedure

This project aims to build off the work done by members of teams at MLPerf and Ten-
sorFlow, expanding the scope of data analyzed to include power consumption figures.
The process for collecting data will be discussed in the following section, along with
some metrics that will be analyzed. The goal is to create a metric that is indicative of
both performance and efficiency.

2.1 Preparation

Modern graphics cards often contain the same GPU in a variety of different models,
with minor differences such as clock speed, amount of VRAM, and the number of cores
enabled. A variety of cards from Nvidia will be selected for testing. These will come
from the previous 4 generatoins of GPUs, released between 2015 and 2020. From
each generations the highest performing consumer card will be tested. The selected
Graphics Cards can be seen within Table

‘ Graphics Card ‘ GPU ‘ Process Size ‘ Cuda Cores ‘ Tensor Cores ‘ VRAM ‘ Clock Speed ‘ TDP ‘ Year ‘ Cost ‘

RTX 3090 GA102 8nm 10496 328 | 24GB | 1395/1695 MHz | 350W | 2020 | £2000
RTX 2080ti TU102 12nm 4352 544 | 11GB | 1350/1545 MHz | 250W | 2018 | £1000
GTX 1080ti GP102 14nm 3584 Null | 11GB | 1480/1580 MHz | 250W | 2017 | £500
GTX 980ti GM200 28nm 2816 Null 6GB | 1000/1075 MHz | 250W | 2015 | £300

Table 2.1: The specifications and price paid for each GPU used in testing as defined in
Nvidia’s reference specifications [11] [12] [13] [16], with cost determined by price paid
for each GPU.

Next a benchmark was selected to use as a baseline test for comparing each generation
of graphics card, the ResNet-50 [29] benchmark. It runs using the TensorFlow package
in Python 3 typically within a Docker container to simplify the environment setup
and to promote consistency between tests. The benchmark also allows for tailoring
to each GPU’s capability with image batch sizes that can be specified for each run.
The maximum image batch size depends on the card’s VRAM capacity, with a higher
capacity allowing for more images. The benchmark measures the GPU’s ability to

9
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process images within a convolutional neural network (CNN), giving a score in the
form of images processed per second, or IPS.

‘ CPU ‘ Cores ‘ Clock ‘ Chipset ‘ RAM ‘ Clock ‘ SSD ‘ Power Supply ‘
| 197920x | 12 | 44GHz | x299 | 8x8GB | 3200MHz | 8TB NVME | 1600W |

Table 2.2: The components which will be used in the test bench while researching.

For all testing and data collection, the same test bench will be used to keep the hardware
variances at a minimum. The specifications of the test bench can be seen in Table
The system is configured in a way that it will not inhibit the performance of the GPU
while testing. It offers adequate airflow for cooling the system, and components that
will not inhibit the GPU’s performance. The OS chosen to run test was Windows 10
due to many GPU monitoring utilities only support this Windows.

2.2 Testing

Prior to testing, the graphics card is installed in the system and checked briefly to
ensure it functions. Then the card’s current power limit is noted in the Table [3.1]
This power limit will serve as the baseline for testing, with subsequent tests run at a
reduced level. Then the environment for data collection is set up using Nvidia’s version
of Docker [20]] within Ubuntu. This variant enables GPU acceleration, a necessity for
testing. It was initialized using the following command to pull the Docker container,
along with the necessary codebase from TensorFlow’s Github [29] for running the
benchmark.

nvidia-docker run --gpus all --shm-size=48g -it --rm -v
cri nvcr.io/nvidia/tensorflow:20.12-tf2-py3

wget https://github.com/tensorflow/benchmarks/archive/
master.zip

unzip master.zip

cd benchmarks-master/scripts/tf_cnn_benchmarks/

Once the environment is ready, the testing can begin, but first the maximum batch
size must be determined. This is dependent on the amount of VRAM the GPU has,
shown in Table [2.1} as the data set must be loaded into the memory. Once it has been
found, the batch size is noted in the description of Table [3.1] pertaining to the GPU
being tested. The benchmark is then run using the following code, with a batch_size of
XXXX set to the value found during the preliminary testing.

python tf_cnn_benchmarks.py --num_gpus=1 --batch_size=
XXXX --model=resnet50 --variable_update=
parameter_server --data_format=NCHW --use_£fplé

Additional software, GPUz [28] and ICUE [4], are required to run while testing. These
monitoring tools will be used to track parameters outside the scope of the benchmark’s
result. They will first be used as a method of validation to ensure that the set power
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limit is adhered to, but will also track GPU utilization, GPU clock speed, VRAM
utilization, and the total system power consumption. Each of these figures serve as
indications of the load put on the GPU by the benchmark. When the tests are run,
it is expected that they will show between 90% - 100% VRAM and GPU utilization.
A figure consistently less than this indicates that parameters for testing have not been
properly optimized, skewing the results of the test. If this is the case, further modifying
of the parameters may be necessary before testing.

Each test at a power limit is run three consecutive times, with a 1 minute gap in between
tests to allow the temperature of the system components to stabilize. This ensures that
heat does not build up, causing the GPU to thermal throttle. After the tests are complete
the IPS values are added to Table Then the power limit is reduced by 10W using
Nvidia’s System Management Interface (nvidia-smi), a utility included with the GPU’s
drivers. It allows for hardware monitoring and the modification of GPU parameters
such as the power limit. The following command is used to adjust this, where XXXX
represents the new power limit in watts.

nvidia-smi -i 1 -pl XXXX

This concludes the testing procedure, repeating it for each GPU until the lower bound
of its power limit is reached. It is worth noting that the TDP of the card does not
necessarily indicate the highest power limit. Often cards are capable of surpassing this
by around 20-30W. It is also important to ensure that the benchmark runs on the correct
GPU if multiple cards are present in the system.

2.3 Analysis

Once the selected cards have been tested, the data will be evaluated based on a number
of factors. First, the raw performance figures of each GPU will be discussed. It is
expected that as generational improvements occur, this metric will increase substan-
tially. This data will then be considered along with the power consumption of the card.
To accomplish this the cards will be compared using a Performance Per Watt (PPW)
metric.

The new metric will normalize the card’s performance based off of its power con-
sumption. This will allow a for meaningful comparison between vastly different raw
performance figures. It provides a quantifiable measure for comparing the card’s ef-
ficiency. Then data collected from the GPU monitoring programs will be analyzed
to see what effect lowering the power limit has on the GPU’s components, aiming to
demonstrate why performance decreases as the power limit is lowered. Finally, other
aspects of performance will be analyzed, taking into account factors such as GPU cost
and power cost over time while operating in a ML environment.



Chapter 3

Results

3.1 Data Review

The data collected from the testing can be seen in Table[3.1] It is split into 4 sub tables,
each representing one GPU. The description of the sub table indicates the GPU used
as well as the batch size used during the test. The tables record the power limit set for
testing under the Watts column. Results are recorded under the columns marked Test
1, Test 2, and Test 3, with the value reported in IPS.

The column labeled Average is derived by taking the mean of the values in the Test
columns. This is done to account for any variances between tests, though all tests
showed less than 5% variance between runs. The PPW column also was derived based
on other values in the table. It takes the Average column and divides it by the Watts
column, giving a measure of Images per Watt per Second (IPW).

Each graphics card was tested over a different range of power limits, starting at the
card’s default power limit down to the lowest allowed by nvidia-smi. The RTX 3090
had the highest range, with the tests between 350W and 180W. The other cards op-
erated within a lower power limit range, all starting at 270W, and dropping as far as
110W. The values between 270W and 180W were tested using all graphics cards, while
other values outside this range lack data from one or more cards.

In addition to data from the benchmark, supporting data from the RTX 3090’s testing
has been included in Table 3.2 The Watts column represents the specified power
limit, showing the same range of values as Table The other data in the table
was collected using the GPUz utility to log parameters of the card while testing. After
setting the power limit, logging was started in GPUz and run through the duration of
all 3 tests. However, due to the minute-long gaps, the log file also included data from
in-between tests. To combat this issue rows were dropped from the file by filtering
the Memory Usage column. This left only data from the periods of time when the
benchmark was actively running. Then the data was consolidated by averaging the
values of each parameter at a specific power level.

12
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| Watts | Test1 | Test2 | Test3 | Average | PPW | | Watts [ Test 1 | Test2 | Test3 | Average | PPW |

350 | 1249.67 | 1250.86 | 1248.56 | 1249.69 | 3.57 | | 270 | 643.70 | 642.69 | 636.14 | 640.84 | 2.37
340 1245.47 | 1242.13 | 1241.36 | 1242.98 | 3.65 260 634.56 | 640.26 | 632.54 | 635.78 | 2.44
330 1240.28 | 1237.64 | 1235.07 | 1237.66 | 3.75 250 639.16 | 622.30 | 628.28 | 629.91 2.51
320 | 1231.17 | 1230.69 | 1230.55 | 1230.80 | 3.84 240 636.18 | 621.73 | 624.43 | 627.44 | 2.61
310 1221.71 | 1223.60 | 1222.24 | 1222.51 | 3.94 230 627.37 | 630.67 | 617.45 | 625.16 | 2.71
300 | 1212.95 | 1211.77 | 1215.69 | 1213.47 | 4.04 220 62739 | 631.10 | 606.56 | 621.68 | 2.82
290 | 1203.87 | 1199.51 | 1198.45 | 1200.61 | 4.14 | | 210 | 598.86 | 628.75 | 628.39 | 618.66 | 2.94
270 1176.98 | 1170.95 | 1169.67 | 1172.53 | 4.34

260 1162.42 | 1157.76 | 1156.92 | 1159.03 | 4.45 12938 2213431;471 2}23(9) 2(9)‘51;13 2838(9) ;gg

250 1127.97 | 1128.94 | 1121.43 | 1126.11 | 4.50
240 1094.05 | 1092.60 | 1087.85 | 1091.50 | 4.54 170 391.54 | 608.80 | 594.31 | 598.21 3.51

230 | 103250 | 1027.25 | 1027.91 | 102922 | 4.47 160 | 591.76 | 587.97 | 593.07 | 590.93 | 3.69

210 893.71 | 885.52 | 881.87 | 887.03 | 4.22 140 541.14 | 538.83 | 535.60 | 538.52 3.84
200 819.47 | 817.18 | 80933 | 81532 | 4.07 130 494.49 | 498.38 | 489.11 | 493.99 | 3.79
190 | 738.07 | 730.12 | 726.04 | 731.41 | 3.84 120 425.54 | 430.33 | 424.90 | 426.92 | 3.55
180 | 626.51 | 628.26 | 623.34 | 626.03 | 3.47 110 341.46 | 339.72 | 34591 | 342.36 | 3.11

(a) RTX 3090 (batch_size = 512) (b) RTX 2080ti (batch_size = 128)

Watts ‘ Test1 | Test2 ‘ Test 3 ‘ Average ‘ PPW ‘
270 | 25553 | 258.97 | 257.9 | 25746 | 005 | | Watts | Test1 | Test2 | Test3 | Average | PPW |

260 | 254.87 | 255.34 | 255.89 | 255.36 | 0.98 270 15498 | 156.84 | 153.21 | 155.01 | 0.57
250 | 254.29 | 253.93 | 253.97 | 254.06 | 1.01 260 153.10 | 154.22 | 151.04 | 152.78 | 0.58
240 | 249.84 | 252.91 | 250.18 | 250.97 | 1.04 250 151.45 | 150.70 | 148.43 | 150.19 | 0.60
230 | 243.93 | 244.08 | 244.11 | 244.04 | 1.06 240 150.16 | 147.83 | 148.45 | 148.81 | 0.62
220 | 242.14 | 241.37 | 241.07 | 241.52 | 1.09 230 147.45 | 146.69 | 146.19 | 146.77 | 0.63
210 | 239.40 | 239.77 | 238.56 | 239.24 | 1.13 220 146.56 | 145.79 | 145.51 | 145.95 | 0.66
200 | 237.71 | 239.14 | 237.29 | 238.04 | 1.19 210 145.83 | 144.47 | 145.19 | 145.16 | 0.69
190 | 234.12 | 236.21 | 235.92 | 23541 | 1.23 200 14530 | 143.23 | 143.81 | 144.11 | 0.72
180 | 231.88 | 232.26 | 231.50 | 231.88 | 1.28 190 142.34 | 141.87 | 140.97 | 141.72 | 0.74
170 | 226.64 | 228.19 | 227.98 | 227.60 | 1.33 180 135.83 | 136.36 | 136.24 | 136.14 | 0.75
160 | 223.55 | 227.13 | 224.89 | 225.19 | 1.40 170 126.76 | 128.53 | 125.42 | 126.90 | 0.74
150 | 209.47 | 206.61 | 208.96 | 208.34 | 1.38 160 115.49 | 113.50 | 113.88 | 114.29 | 0.71
140 187.63 | 186.84 | 186.63 | 187.03 | 1.33 150 103.36 | 102.40 | 99.46 | 101.74 | 0.67
130 162.30 | 161.02 | 160.21 | 161.17 | 1.23 140 | 90.78 | 87.74 | 86.02 | 88.18 0.62
120 135.56 | 134.82 | 13592 | 13543 | 1.12 130 | 77.35 | 74.58 | 77.89 | 76.60 0.58

(c) GTX 1080ti (batch_size = 128) (d) GTX 980ti (batch_size = 32)

Table 3.1: Data collected from the TensorFlow ResNet-50 benchmark

Each column in Table [3.2] shows a valuable piece of information relating to either
performance or validation of the tests. The first three columns show the GPU’s clock
speed, VRAM speed, and temperature, all attributes that directly affect performance.
The remaining columns show data pertaining to test validation. The aforementioned
Memory Usage column shows a constant value of 23071MB due to the repeated tests
all running at the same batch size, equal to 96% of the cards total VRAM. The GPU
Load column indicates the amount of resources currently in use by the card, ranging
from 95% to 98% across all tests. Both of these values show that resources were nearly
fully utilized while testing. Inconsistent values in these columns would raise suspicion
of inaccurate results.

The Power Draw column was obtained by measuring the actual power consumed by the
card while testing. This differs from the set power limit, which acts more as a guide-
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line that the GPU follows, however it is possible for the power limit to be exceeded.
This occurred frequently with power consumption between +/- 20W of the power limit
while under load. Though not shown in Table [3.2]due to averaging the values, the RTX
3090 peaked at 368W while testing the 350W power limit. The card never exceed the
power limit for more than a few seconds at a time, often dipping below it afterwards.
This is further evidenced by the average value, showing that the card would operate
between OW - 10W under the power limit for all tests. While not shown with the other
cards for the sake of brevity, the GPUz statistics were monitored for constancy and
followed the same trends while testing.

The decrease in power consumption also resulted in decreased performance for all
cards. This was the expected outcome, as reducing the power limit will force some
components to limit power consumption. When looking at the GPU MHz column in
Table [3.2] a decrease in the clock speed of the card is observed at every subsequent
power limit. This closely mirrors the decrease in average performance shown in Table
As the GPU clock speed is slowed, the performance suffers because the card is
computing cycles at a slower rate. This also affects the temperature, with the RTX 3090
recording a 10 degree reduction in temperature between its maximum and minimum
power limits.

GPU Load % | Power Draw

Watts ‘ GPU MHz ‘ VRAM MHz | Temperature ‘ Memory Usage MB %

350 1852.83 1187.7 70.62 23071 96.05 340.47
340 1836.52 1187.7 71.92 23071 96.01 331.47
330 1810.64 1187.7 70.79 23071 96.29 324.29
320 1802.32 1187.7 70.22 23071 96.21 314.66
310 1771.23 1187.7 70.25 23071 96.44 305.61
300 1764.72 1187.7 69.70 23071 96.60 297.67
290 1721.90 1187.7 69.61 23071 96.13 285.86
280 1699.14 1187.7 68.10 23071 95.76 27591
270 1668.26 1187.7 67.86 23071 96.11 268.35
260 1613.15 1187.7 65.87 23071 95.92 257.29
250 1533.96 1187.7 66.18 23071 96.85 247.94
240 1462.53 1187.7 64.08 23071 96.67 237.82
230 1387.60 1187.7 63.91 23071 96.64 227.92
220 1285.46 1187.7 63.55 23071 96.96 216.61
210 1165.35 1187.7 62.41 23071 97.44 207.64
200 1044.36 1187.7 61.70 23071 96.74 197.90
190 | 902.79 1187.7 60.53 23071 97.38 188.11
180 | 793.82 1187.7 60.48 23071 98.27 179.90

Table 3.2: The RTX 3090’s average stats and power consumption figures recorded with
GPUz while running the benchmarks

Despite the GPU clock reduction, VRAM clock speed remained constant for all tests
with the RTX 3090, indicating that the card prioritizes memory speed and bandwidth
over GPU cycles when conserving power. This was unexpected as a major factor in
the card’s 350W TDP was the increase to 24GB of VRAM. When designing the card
Nvidia was unable to procure 2GB GDDRG6 chip sets, instead using 24 individual 1GB
modules. While this was the standard for past generations of GPU, cards such as the
RTX 2080ti only required 11 of these chips. The additional 13 modules used on the
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RTX 3090 dramatically increased the power consumption, peaking at 95W. This stayed
consistent for all tests, with VRAM accounting for 50% of the power consumption
at the 180W power limit. A similar observation of a static VRAM clock speed was
observed when testing the other GPUs.

3.2 GPU Performance

Within Figure two distinct groupings can be observed, the RTX 3090 / 2080ti and
the GTX 1080ti / 980ti. There is a large performance deficit between the two groups,
with the RTX cards exhibiting far higher performance compared to the older GTX
cards. This occurred for a multitude of reasons, primarily the addition of Nvidia’s
Tensor Cores to the RTX cards. These new cores are specifically designed to accel-
erate matrix operations, a key aspect of ML’s computation. This is compounded by
generational improvements made by reducing the transistor size in the manufacturing
process.

1200 RTX 3090
RTX 2080ti
—o— GTX 1080ti
- 10001 _o— GTX 980ti
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Figure 3.1: A comparison between the raw performance of each graphics card within
the Tensorflow ResNet50 CNN test.

The highest performance observed from any card was during the 350W test preformed
on the RTX 3090, averaging to 1249.69 IPS. This performance is nearly double that of
the RTX 2080ti’s highest score of 640.84 IPS. When looking at the individual speci-
fications of the two cards, as shown in Table the RTX 3090 utilizes 10496 Cuda
Cores and 24GB of VRAM, a 141% and 118% increase respectfully over the RTX
2080ti. These increased specifications account for some of the performance gain ob-
served. However following the same logic would suggest that power consumption
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should increase proportionally, more than 100W. Additionally the RTX 2080ti actually
has 216 more Tensor Cores than RTX 3090. This raises suspicion that another factor
must also be responsible for the increase in performance.

In this case, differences in the GPU architecture are responsible. Both GPU’s in ques-
tion come from Nvidia’s new RTX line of cards, though there were significant changes
made between the 2080ti’s Turing and the 3090’s Ampere architectures. The manufac-
turing process used for each card can be seen in Table Amprere uses a new 8mm
process from TSMC, while Turing used an older TSMC 12nm process, just a slight
modification to the previous 14nm process. As discussed in Section [[.4] the decreas-
ing in transistor size increases the efficiency and density of the chip, allowing for the
increase in Cuda Cores while only causing a 1.3% increase in the GPU’s physical chip
size [IL5]].

The Tensor Cores introduced to the consumer market with Turing are actually the sec-
ond generation [14], as they were first used in Nvidia’s professional only Volta GPU’s.
When Nvidia released the specifications and performance figures for Amprere’s third
generation of Tensor Cores, they stated that each core had 2x the performance per
clock of the second generation [31]. This would explain the roughly 40% decrease in
tensor core count, while increasing the overall performance.

The same trends observed within the RTX series cards are also present for the GTX
series cards. The large gap in performance when testing can be attributed to lack of
tensor cores, lower total cuda core count, and older manufacturing processes. The
GTX 980ti, GTX 1080ti, and RTX 2080ti, all possess the same TDP, shown in Table
2.1l Despite this, the GTX cards perform far worse than the RTX cards. The GTX
980ti, the oldest GPU tested, showed the lowest IPS and IPW metrics. It scored only
155.1 IPS at a power limit of 270W.

During the testing of the GTX 980ti, it appeared that the thermal limitations of the
card were reached when the power limit was set above 200W. This may be due to the
age of the card or the cooling characteristics specific GPU being tested, but the other
GPU’s did not encounter the same issue. Even the RTX 3090 was able to successfully
manage thermals at its 350W power limit. However the discussion of raw performance
figures fails to account for other factors such as the cards power consumption relevant
to performance.

3.3 Performance Per Watt

The doubling in performance observed with the RTX 3090 does come with a cost.
More specifically it comes a 100W increase to the TDP of the card. Nvidia under-
stands this when releasing new GPU’s, often touting figures such as a 1.9x increase
in FPS/Watt in games [[15]]. This metric falls under the category of a Performance Per
Watt (PPW) metric, something that becomes increasingly important when quantifying
differences between system performance at large scales.

The data in Figure [3.2] was generated by plotting the Watts column against the PPW
column from Table [3.1] This PPW metric, called IPW, shows the relative performance
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Figure 3.2: The normalized performance of each GPU from Figure It was calculated
by dividing the images per second by the power limit.

of the cards compared to one another with respect to power consumption. When com-
paring data in both Figure and Figure it is clear that as power consumption
increases, diminishing returns in performance are observed. In the case of the RTX
3090, peak performance occurs at 350W with 3.57 IPW, while peak efficiency occurs
at 240W with 4.54 IPW.

Each GPU has a different power limit corresponding to peak efficiency. This was
expected as variations in the architecture and GPU specifications would result in a
mixed outcome. However, all GPUs while testing showed peak efficiency at a power
limit between 60% and 70% of its TDP.

As the power limit for each card is initially decreased, the IPW metric increases at
an apparently linear rate. This continues until it peaks, then quickly falling off at
lower power limits. When looking at the data in Table each GPU shows a lower
IPW metric at its maximum power limit compared to its lowest. This curve creates
an interesting optimization problem when planning systems for ML applications. It
would be unexpected if Nvidia was unaware of their GPUs efficiency curve, indicating
that they consciously pursue extra performance at the expense of efficiency.
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Discussion

4.1 Optimizing System Performance

Depending on the use case, optimal system configurations may vary dramatically, with
factors such as system budget, physical size, existing infrastructure, and thermal or
power limitations all needing consideration. The wide variety of possible system com-
binations means that it is impossible to offer a *One size fits all’ solution when plan-
ning. Instead, each of these factors should be investigated individually and prioritized.
Many system configurations may offer similar levels of performance to one another but
at the expense of one or more categories. Often when selecting components the user
must make compromises to fit the system within the given constraints. The Min-Max
strategy commonly tackles this problem.

A min-maxed system is one that focuses exclusively on 1-2 aspects of the system,
maximizing their values while disregarding or minimizing others. This often results in
a system that may be unbalanced or severely lacking in some categories. An example
of a min-maxed system would be one that focuses purely on raw performance, while
minimizing physical space taken. Something like Nvidia’s recently announced DGX
A100 [17] system falls under this category. It contains 8 x Ampere GA100 GPU’s
connected through a 600GB/s NVLINK connection, each GPU containing over double
the raw compute performance of a RTX 3090. All of this fits into a single 6U server
chassis, roughly 2x the size of the Corsair Obsidian 500D used in the test bench for this
paper. Though it is unparalleled in compute power density, it is the result of proprietary
engineering done by Nvidia and does not come cheaply, costing roughly £212,000.

Even a more balanced system approach for a large scale compute server may involve
some compromises. If financial constraints are a high priority, building a system which
involves less proprietary hardware and even used equipment, may better balance the
end result. Many data centers and consumers often sell older hardware at far below the
original MSRP. This creates opportunity for those looking to save financially, however
these products have often been used for years ahead of time and will have no man-
ufacture warranty. As discussed in Section [2.2] it is important to look at the power
consumption of GPU’s compared to performance, especially as the models get older.
While it may be possible to currently purchase 10 GTX 980ti cards for the same price

18
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as a single RTX 3090 and achieve similar performance metrics, the power consump-
tion would increase by a factor of nearly 10 as well. In addition to the increased power
consumption, the physical size of a system speced in this way would be substantial,
likely requiring multiple 4u server racks. The decision of using a single GPU vs a
multi GPU system warrants further discussion.

4.2 Single GPU Systems

Single GPU systems offer a myriad of advantages over multi GPU systems. Primarily
they are more streamlined, requiring less physical space, smaller power supplies, and
lower CPU overhead compared to a multi GPU setup. This results in a system that
is essentially "Plug and Play’, as most GPU intensive tasks will run very efficiently
on a single card setup. Software designed to run on GPU’s often requires specific
implementation to run on multi-GPU systems, also increasing the overhead and trou-
bleshooting for the developer. Applications without this implementation may not take
advantage of a second GPU, leaving it to idly consume power in the system. This
actually occurred when testing with the TensorFlow benchmark, despite two of the
same card being present in the system, the benchmark crashed when run or would only
utilize the GPU in a single card. Many hours were spent trying to troubleshoot this
issue and an optimal solution was never reached, hence the presence of only single
card performance metrics for this benchmark.

When releasing a consumer GPU, such as the cards used in this paper, Nvidia assumes
that most users will only utilize a single card in their system. This is evidenced by
the slow removal of SLI or NVLINK multi GPU capabilities from Nvidia’s consumer
products. While it used to be a widely available feature, only the RTX 3090 supports
it from Nvidia’s current generation of GPU’s. Therefore they are operating under the
assumption of a single card use case for the majority of users, attempting to maximize
performance in this configuration. When looking back at the data shown in Figure [3.1]
through this lens, it begins to make more sense. The performance gains from increasing
power consumption after the card reaches maximum efficiency are mild, however they
add up to a significant value once the TDP is reached.

The RTX 3090 achieved peak efficiency around 240W, shown in Figure[3.2] with a raw
performance of 1091.5 IPS. Comparing this to its maximum performance of 1249.6
IPS at 350W gives a difference of 158 IPS. This performance increase of 14% over
peak efficiency comes at the cost of a 45% increase in GPU power consumption. How-
ever, being a single GPU system, the user may opt for the performance increase despite
the lowering of efficiency. When looking at system performance overall, the GPU only
increases total power consumption by 110W. Comparing this to Nvidia’s recommended
power supply configuration of 750W - 1000W [16]], depending on system’s other com-
ponents, the previously large 45% increase now only accounts for a 14% - 11% power
increase system wide. This value now closely matches the performance gain observed
in the card, essentially keeping the system’s PPW value the same, despite the decrease
in GPU efficiency.

Due to these factors, in smaller systems dedicated to ML research, it is advised that a
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single GPU configuration is used, however this does come with an exception. GPU’s
while used for compute in this context of this paper are often required to perform other
functions in a system such as display output. During preliminary tests with the RTX
3090, it was found that performance dropped by nearly 10% on average when the GPU
being tested was also tasked with handing the display overhead. This used a portion
of the GPU’s compute capability as well as roughly 1GB of VRAM. The simplest
way around this is to use a low powered secondary GPU for the primary purpose of
handling display outputs, though this is only relevant if the system requires a GUL. A
system that utilizes a remote monitoring protocol such as SSH avoids this overhead
entirely.

4.3 Multi GPU Systems

Despite the drawbacks mentioned in the previous section, there are still merits to multi
GPU systems. The largest benefit is often the increased memory capacity. As men-
tioned in the previous sections, Nvidia utilizes a multi GPU protocol called NVLINK,
allowing for the sharing of many GPU resources, including VRAM pooling. Despite
the absence from most new consumer cards, NVLINK is still widely used in data center
applications and supported by Nvidia’s professional products. The technology allows
for two or more GPU’s to communicate over a high bandwidth physical link between
the cards. The connected GPU’s are then able to act as a single unit, pooling both the
compute and memory capabilities.

The amount of VRAM present in a system often dictates the ability of a GPU to handle
large workloads efficiently. As discussed in Section [2.2] the amount of VRAM each
card had available dictated the batch sizes used in testing. Further increasing the batch
size resulted in the GPU exceeding memory capacity and the test failing. Ideally the
data set used when training a model would be less than the total VRAM available.
However, unlike the system memory, VRAM is soldered to the GPU’s PCB, making
it nearly impossible to increase. Nvidia is aware of this issue, offering GPU’s such as
the RTX A6000, a professional GPU based on the same GA102 chip as the RTX 3090,
but with 48GB of VRAM compared to 24GB. These cards come at a significant price
increase over their mainstream counterparts, but do fix the memory issue. In extreme
cases this may not be enough still requiring more than one GPU to utilize memory
pooling for large data sets. If implemented correctly, NVLINK works well in most
situations, though it is currently only supported for two cards in the case of the RTX
A6000 and RTX 3090. If more compute is still required, additional GPU’s can be used
in a different manner.

Multi GPU systems that lack a hardware bridge between cards instead work in a par-
allel computing manner with the system’s CPU managing the overhead. Unlike an
NVLINK setup, the GPUs are separate without resource pooling, allowing them to
execute tasks in parallel independent from one another. This scales to larger than 2
GPU’s, being mainly limited by the CPU’s PCIE lane capacity. The additional over-
head also requires more system memory and explicit multi GPU implementation for
the model training. Despite these drawbacks, the scale can be increased dramatically
through distributed computing. In this use case, systems can each contain a number of
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GPU’s that are then connected to one another over high speed local networking. This
allows for each subsystem to be self contained, having its own processors, RAM, and
GPU’s, while still contributing performance to a larger task. While scaling across these
systems is never perfect, recent techniques to mitigate performance loss by roughly
30% [7] have been proving successful.

When looking at the power consumption of these multi GPU systems, the GPUs take
up far more of the system’s total power consumption compared to the single GPU
system. This in turn increases the importance of GPU efficiency for data centers.
Assume a data center had a distributed computing network containing 10 nodes, each
with 8 RTX 3090 GPU’s tuned for maximum efficiency, with an additional 750W used
by each node for the system overhead. They could expect around 10 * ((8 * 240W) +
750W) = 26.7kW in total power draw from the servers. If they then decided to run the
cards at the recommended 350W TDP, the servers would draw an additional 8.8kW, a
32.9% increase in power consumption. Compared to the expected performance gain
of 14%, this power increase would lower the total system’s efficiency. In addition, one
of the primary costs in running a data center is electrical. Then by increasing power
consumption by 32.9%, it is expected that running expenses would increase in a similar
amount.

Lastly, multi GPU scaling will never reach true linear rates as increases in system
complexity and the use of distributed computing will all lower the final performance
figures. This is due to the lack of bandwidth between systems and GPUs. Within a
computer the GPU has the largest bandwidth to the processor it is directly connected
with. Other GPUs in the same system are limited in connection speed by needing to
utilize the connection with the processor as a bridge between the two. This lowers
the bandwidth each GPU will receive and increases latency. This is one of the main
reasons NVLINK is used as it bypasses this CPU managed connection in favor of a
separate, high bandwidth hardware path.

4.4 Example System Configurations

Below in Table multiple system configurations are detailed, focusing on balanc-
ing not only performance characteristics, but also energy consumption and cost. The
systems, while different each have their own distinct benefits over one another. It also
introduces a variation on the [IPW metric to help understand energy costs over a longer
period of time. This is the Images per Watt Hour (IPWH) metric, obtained by mul-
tiplying IPW * 3600 seconds. The IMG / Hour column shows the total number of
images processed in an hour assuming the system is constantly running. For the sake
of simplicity it assumes perfect scaling across multiple GPU’s.

Systems A - G are sorted in the table in accordance to the IMG / Hour metric. This or-
der also matches the initial system cost, with it scaling almost linearly to performance.
Historically this has not always been the case, however recent increases in demand
from sectors such as Bitcoin mining have skewed the pricing structure. As each GPU
is known to produce a certain amount of Bitcoin per day, GPU prices reflect this ability,
fluctuating with the currency. Despite this, looking at the initial cost of the system plus
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System \ GPU \ Num \ Cost \ Watts \ IPWH \ IMG / Hour \
A RTX 3080 | 4 £8,000 | 1400 | 12,852 | 18,000,000
B RTX 3080 |4 £8,000 | 960 16,344 | 15,696,000
C RTX 3080 |3 £6,000 | 1050 | 12,852 | 13,500,000
D GTX 980ti | 16 £4,800 | 2880 | 2700 10,368,000
E RTX 2080t | 4 £4,000 | 1080 | 8,532 | 9,216,000

F RTX 2080t | 4 £4,000 | 600 13,968 | 8,380,800

G GTX 1080ti | 8 £4,000 | 1280 | 5,040 | 6,480,000

Table 4.1: Example system configurations to illustrate the differences between optimiz-
ing performance, efficiency, and cost.

the power consumption over time yields interesting results. The median price per kWh
in the United Kingdom falls at 15p [23]], or 0.015p per Wh of energy consumed. This
allows pricing models to be constructed over a period of time using the same system
configurations.

System \ 1 Month \ 6 Months \ 1 Year \ 2 Years \ 4 years \ 8 Years

£8,153 | £8,919 £9,839 | £11,679 | £15,358 | £22,716
£8,105 | £8,630 £9,261 | £10,522 | £13,045 | £18,091
£6,114 | £6,689 £7,379 | £8,759 | £11,518 | £17,037
£5,115 | £6,692 £8,584 | £12,368 | £19,937 | £35,074
£4,118 | £4,709 £5,419 | £6,838 | £9,676 | £15,352
£4,065 | £4,394 £4,788 | £5,576 | £7,153 | £10,307
£4,140 | £4,840 £5,681 | £7,363 | £10,727 | £17,455
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Table 4.2: The cost over time of each system as defined in Table

Shown in Table is the cost of running the GPUs over various periods of time.
One notable configuration is F, coming in at the lowest cost after 8 Years, this is due
to its low power consumption of 150W per GPU. It was set at this level to optimize
efficiency as found in Section [3.1] Configuration D is also worth mentioning as it
utilizes 16 GPU’s. The initial cost of this system was low due to the age of the GTX
980ti, but upon running the system it requires 2880W, the most of any configuration.
The total cost after 8 years was also the highest of any configuration.

This data can be further expand on to create a performance to price metric for the
systems. This is done by taking the total images processed over a period of time and
dividing that by the cost of running the system to up to that point. This will illustrate
which systems offer the best value from a financial perspective. In Table it is
System E that takes the lead when only run for a single month.

Though it may be tempting to run the GPU at its TDP, as the short term cost is mostly
determined by the purchase of the card, in the long term it will end up costing more.
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System ‘ 1 Month ‘ 6 Months ‘ 1 Year ‘ 2 Years ‘ 4 years ‘ 8 Years ‘

1.610 8.835 16.018 | 26.991 | 41.050 | 55.506
1.413 7.962 14.840 | 26.123 | 42.142 | 60.778
1.610 8.835 16.018 | 26.991 | 41.050 | 55.506
1.109 5.089 7.935 | 11.014 | 13.666 | 15.536
1.6333 | 8.569 14.895 | 23.608 | 33.367 | 42.060
1.504 8.353 15.332 | 26.329 | 41.051 | 56.982
1.137 5.836 9946 | 15.348 | 21.071 | 25.900
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Table 4.3: The number images (Millions) processed per £ spent over time.

Looking at systems F and B, both start out at a lower value compared to their less effi-
cient counterparts. However, after 1-2 Years have past, they surpass the other systems
and continue to widen their gap as time progresses. Systems A and C show the same
values because they are essentially the same configuration with C simply removing a
GPU. Due to the nature of this metric, the number of cards in the system is irrelevant
for the calculations as it is canceled out when dividing by the cost.

4.5 Variations in Graphics Cards

Each of the GPUs used in testing, while developed originally by Nvidia, were actually
built off of a provided specification by board partners. As discussed in Section 1.4
these partners are responsible for tweaking the provided GPU designs in various ways.
The core specifications such as number of Cuda Cores and amount of VRAM remains
constant across all models, but other aspects such as power delivery components, cool-
ing designs and even the TDP of the card are modified frequently.

While theses design choices may not appear significant at first, they can greatly impact
the functionality of the card. In multi GPU systems where cards are often placed
directly next to one another blower style coolers or water cooling blocks may provide
a better thermal management solution than the standard fans found on most cards.
Without taking into account the thermal characteristics of the specific card being used,
the system is at risk of thermal throttling due to heat buildup, ultimately resulting in
lower performance than expected [2].

The chassis that will contain the GPUs is also extremely important to consider. Case
size and designs vary widely between manufactures, often dramatically affecting per-
formance. A case that has inadequate airflow will always preform poorly due to the
inability to exhaust heat from the system again leading to thermal throttling [2]. The
physical size of the case may also limit GPU selection due to the form factor of the
card. This was an issue encountered when sourcing GPUs for this paper, with some
models being too long to fit in the case.
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Evaluation

5.1 Project Scope

The project as initially proposed over a year ago actually remained very similar to
the final outcome of the paper. However the completion was not without issue and
constantly changing plans. The primary problems stemmed from the testing of GPUs,
as multiple failed attempts to collect data occurred over the span of a month. Originally
testing was to be conducted with MLPERF but many issues were encountered when
attempting to setup the testing environment.

Immediately after acquiring the 8 GPUs, the test bench had issues with a corrupted
SSD as the systems boot drive. Windows was then reinstalled and updated to the most
recent developer build on a new SSD. In reality this was a good thing as the instillation
was void of any unnessicary programs, but the process still took nearly a week between
troubleshooting OS issues, ordering the replacement hardware, and reinstalling the OS.

After the hardware was stable, multiple attempts were made to install various bench-
marks from MLPERF [24]. However when installing the required Docker container
for a benchmark, the download speed on the initial pull was below 500Kbps giving
an estimated 22 day wait time despite a download speed of 300Mbps under normal
circumstances. Multiple solutions were attempted such as purchasing a Docker sub-
scription, but nothing increased the speed. It is suspected that the ISP was throttling
traffic when pulling the container. Attempts were made to install the required depen-
dencies for a test directly, but this too failed.

Moving on from MLPERF after over two weeks of troubleshooting, the next best op-
tion appeared to be the TensorFlow ResNet-50 benchmark [29]. Once the dependen-
cies were installed, surprisingly the docker container hosted by Nvidia [19] down-
loaded smoothly. Once installed the procedure developed in Section [2.2] was followed.
However, unexpectedly the GPU failed to pass through to the Docker container. After
another full day of troubleshooting it appeared that the recently applied update from
the Windows Developer program WIP OS 21327 broke GPU support in WSL2 (Win-
dows Subsystem for Linux) [21]. This was indicated in Nvidia’s WSL2 Cuda Toolkit
Documentation [[18]], again halting progress until the next update fixed the issue.
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At this point the testing was already nearing a month behind schedule, but a working
environment was finally set up. The initial plan involved testing not only the single
card configurations of each GPU from Table [3.1] but also dual card configurations.
This would have provided a secondary data point when referencing performance and
is in line with many systems used for ML research.

This data would have paired well the discussion in Sections [4.3] and [4.4] as they both
involved discussion on the benefits of using multi GPU systems, but lacked actual first
party data to back up the claims. Instead, multiple papers [32] [7] [10] were read,
taking their findings into consideration when discussing the systems.

Whenever the benchmarks were run with more than a single GPU physically in the
system, the program would throw massive amounts of python errors, indicating trou-
bles with GPU compatibility were still present. In addition, when starting the docker
containers, the functionality enabling the selection of which GPU should be passed
into the container was broken. In total over a month was spent simply troubleshooting
what should have been a simple testing setup for collecting data.

5.2 Continuation of the Project

Further research in the field of GPU power efficiency should be conducted. As stated
in the paper on Green Al vs Red Al [25], power consumption figures are hardly present
in academic works on ML research. A publicly available database containing informa-
tion on GPU power consumption figures would help many researchers further optimize
the performance of their hardware. This would require the collecting data from papers
which already show PPW figures, as well as encouraging other researchers to partici-
pate with future projects.

Another aspect this report lacks is an explanation as to why the GPUs peak at a specific
power limit. This would involve further research, delving into the electrical engender-
ing aspect of GPU design. Electrical Engineering is not the intended background for a
reader of the paper, catering towards a more traditional computer science reader. Still,
why the GPU hardware behaves in a specific way when exposed to varying power
limits would provide further evidence backing up the results discussed in Section [3.1]
The effect that transistor width has on GPU core count and thermal limitations should
also be explored further. Unfortunately due to the aforementioned time constraints this
research was cut, prioritizing more central topics and data collection.

5.3 Conclusion

This paper attempts to educate the reader on a series of complex topics involving GPU
power consumption and performance optimization. It covers the information while
trying to display it in a clear and concise format. The performance figures shown in
Table [3.1) were collected over a series of benchmarks run using TensorFlow. The data
covers four separate GPUs, each representing a different generation of graphics card
from Nvidia, ranging in release dates from 2015 - 2020.
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The RTX 3090 was the most most modern GPU tested and subject of further analysis.
Performance data collected with the GPUz [28]] utility while benchmarking helped to
shed light on the inner working of a GPU at different power levels. This data, shown
in Table displays a decrease in GPU clock speed similar to the performance deficit
observed in the benchmark. However, the VRAM clock remained constant through all
testing, suggesting that the GPU prioritizes high memory speeds over that of the core
clock. The temperature also dropped significantly between the 350W and 180W tests.

In situations where a GPU may be prone to thermal throttling this indicates that re-
ducing the power limit would help to contain the heat generated by the card [2]. This
would affect performance, but it can be mitigated by first finding the GPU’s optimal
power limit. This level can be seen for each GPU in the [3.1junder the PPW column in
each subtable. The value was obtained by dividing the Average column by the Watts
column, giving a performance per watt metric.

Using a PPW metric is an essential component to building and testing modern systems
used for artificial intelligence research. It helps to find tune the power consumption of
the system, while still maximizing performance. It was shown in Section 4.4/ how the
different power limits and hardware configurations affect not only power consumption
but also long term costs of running the system. Unfortunately many academic studies
still fail to record information pertaining to power consumption, instead focusing on
performance and optimization of networks [25].

Within the six years between 2012 and 2018, the amount of computational resources
dedicated to ML applications grew in excess of 300.000x [25]. This increase is ex-
pected to continue growing exponentially. In a recently published report, it is estimated
that data centers account for 1% of global energy consumption [6], growing to 30%
by the year 2030. This increase does not mean data centers will be using energy saved
by other sectors, rather it indicates that total global energy consumption will rise in
proportion.

The ability to properly optimize these data centers, ensuring maximum efficiency, will
be an essential skill for all researchers in the industry. Failing to optimize a data center
could result in a further 20% - 30% increases in power consumption as indicated in
Section [3.3] It is imperative that researchers are aware of their power consumption
going forward, making a conscious effort to keep it at a reasonable level.

Advances in both hardware and methodologies for training neural nets has kick started
a new era of machine learning. Models are showing previously unparalleled levels
of accuracy when training on the ever generating supply of data. However, these im-
provements in accuracy have become dependent on the availability of massive compu-
tational resources. These massive cloud computing data centers continue to expand,
consuming more energy with every new server. The new models are costly to train both
computationally and environmentally. If steps are not taken to ensure these data cen-
ters offset emission by ensuring data centers receive energy from sustainable sources,
their carbon footprint will grow dramatically in the coming years. A new mindset is
needed within the industry, one of compromise that will balance performance figures
while attempting to minimize environmental impact. A new era of Green Al is need to
ensure a sustainable, technologically advanced civilization for generations to come.
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